Dynamic Context Networks of Wireless Sensors
and RFID tags

Tomas Sanchez Lopez, Daeyoung Kim
AutoID Lab Korea, ICU, Daejeon, South Korea.
Email: tomas, kimd@icu.ac.kr

Abstract— Current research on pervasive systems envisions a
world where computation is not only everywhere, but is also
attached to objects and users moving and interacting with the
environment. For these mobile computing entities to commu-
nicate, wireless links should be evaluated, built and released
in a dynamic, intelligent way. In this paper we analyze the
specific case of mobile entities augmented with sensor and Radio
Frequency Identification (RFID) information. We propose a set
of protocols for intelligent building of dynamic context networks,
where node interactions are conditionally granted and a shared
context is built with the information provided by collaborating
entities.

I. INTRODUCTION

RFID tags hold Electronic Product Codes (EPC) that can
be transmitted over the air and serve as universal identifiers.
Wireless Sensor Networks (WSN) are small devices able to
transmit sensor data through the radio channel and perform
limited amounts of computation. In our previous work, we
proposed WISSE [1] as a service framework for mobile Wire-
less Sensor Networks and RFID. In WISSE, mobile entities
interact and build groups with shared context information in
order to receive meaningful services from a Service Layer
(Figure 1). These entities, ranging from any kind of objects to
users, are equipped with WSN and RFID tags as the means
for gathering their context information.

In this paper, we analyze in detail a part of the WISSE
framework, the Context Layer, where all the interactions
among mobile entities occurs. In the Context Layer, entities
associate and form groups that provide information about a
common context. This context is relevant to users that are
related to the entities, so the the more accurate the provided
information is, the better the services the users will receive. In
order to perform appropriate associations, entities must discern
which groups they should join and assign association priorities
according to their own preferences. Furthermore, groups of
entities and the protocols that tie them together need to be
flexible enough to support dynamic joins and leaves. Figure 1
shows the WISSE architecture emphasizing the Context Layer.
In order to help the understanding of which functionality
is necessary for this layer, we use an example with several
entities and how they decide to group together to provide
context for a user “businessman”.

This paper is organized as follows. Section II compares
our work with other related work in the area. Section III
introduces the Context Layer architecture. Section IV details

Kyungseon Min and Joonho Lee
Korea Telecom, Daejeon, South Korea.
Email: minks, joon@kt.co.kr

=
g B
5
3 [Service Providers and EPC Network
E e GoupC_ b
» | | T emites
\/I L
Entity B
g’ H 3sensors ||
S Database and Middleware BT
i [[EniyA
5 [e T
é " Zser V
-4 .
o .
2 Edge
E De\?vce Edge Edge
] Device Device
Entity and Groupm Services H
Information
Select Comm. Representative: B, node 1 m
““““““
|
Portable
RFID reader
.
; = g
>
©
-
E Entity Entity Entity
3
§ RFID Tag A ’9‘ RFID Tag D 9 RFID Tag E
Scnsnrs(node)| 'Sensorsz node)|
©®©)©
%é ﬁ
Fig. 1. WISSE framework through an example. Three entities (PDA,

Shirt and ID card) team up to provide context information about a user
“businessman”.

the main grouping algorithms while Section V introduces some
extensions. Finally Section VI concludes the paper.

II. RELATED WORK

WISSE architecture could be considered inside the Smart
Space concept, where users’ context is automatically inter-
preted and actions according to that interpretation are taken.
In traditional Smart Spaces, context information is usually
obtained through sensors located in the edge of the system,
observing the user [10] [8] [11] [9]. In this approach, the
user and the context are decoupled in the sense that the main
source of information is not from the user’s point of view
but from the system’s point of view. This means that all the
decision power is put on the system’s side, as the context
information about a user is limited to external sensing and
to make adequate decisions with this limited information. In
WISSE, part of the decision power is placed on the user’s side,

whose responsibility is to gather the context information only
from relevant sources. This simplifies the service provider’s
task, but increases the complexity on the user side which has
to deal with entity associations and information updates. Most
importantly, this new concept of active users entails great
benefits by providing first-hand context data which is very
hard to obtain with traditional approaches.

There exist some works in the area that attempt to provide
first hand information in a similar way our work does. In [12],
users are augmented with portable devices and sensors, but
the service infrastructure is inexistent, making impossible a
truly distributed system. Other works such as [13] build agents
representing the sources of context and perform groupings
of related agents. However, entities with various capabilities
should communicate with the system independently, which
makes the architecture inflexible and unscalable. Projects such
as [3] and [4] and focus on augmenting everyday objects the
same way we do. However, they lack a general infrastructure to
provide spontaneous services which follow the independence
pattern that our work follows.

To our knowledge, there are very few attempts to integrate
RFID and sensor networks, and none of them embed both
technologies inside mobile entities and use the EPC Network
to enhance the Smart Spaces services. In [5], sensor nodes and
RFID readers are merged to provide the user the capability
of reading tags in the environment. However, among other
differences, tags don’t belong to user’s context and there is no
infrastructure to offer services according to sensor or RFID
information. [6] also integrates RFID readers in sensor nodes,
but only intends to, from a user point of view, extend the range
of the RFID system. In [7], RFID tags are used into objects and
users, while sensors are also distributed in the environment.
However, tags are only read to deduce the user’s context in
terms of spatio-temporal constraints.

III. ENTITIES

WISSE entities are not physically different from any object
that may carry a RFID tag. The difference is functional: while
normal RFID tagged objects are just individually read by some
RFID reader, WISSE entities may associate and then transmit
their information jointly. In order to achieve this, entities use
the wireless communication capabilities of their sensor nodes.

From the broad concept of Radio Frequency Identification
(RFID), we choose the EPC Global Tag Data standards [15].
The Electronic Product Code (EPC) is an identification scheme
designed to support the needs of various industries by accom-
modating both existing and new coding schemes. The EPC
Global standards specify a whole architecture framework in
a collection of interrelated standards for hardware, software
and core services [2]. This architecture enables numerous
advantages when managing information related to EPCs.

The EPC Global standards consider various kinds of tags
distributed in classes. A total of five classes are defined,
from the well known passive tags to the battery powered
active tags. In December 2004, EPC Global ratified the second

generation of part of the tag standards, known as the Class-
1 Generation 2 UHF RFID, or air interface. In order to
emphasize a practical approach, we focus our research in
current available technology, such as Class-1 Gen2 RFID tags
and existing wireless sensor networks. However our current
research doesn’t exclude the use of future technology and
part of of our present considerations regarding issues such
as mediation and information capture will be solved with the
evolution of the standards themselves.

According to what we argued before, WISSE entities should
carry one (and only one) passive RFID tag. The tag’s ECP
will uniquely identify the entity, the same way today’s tagged
objects are identified by one EPC. In addition, each entity may
carry several sensor nodes, which may contain any combina-
tion of sensors and actuators. Ideally, each sensor node has
a map of the RFID tag’s memory of the entity it belongs.
Having so, each node has a sense of identity by holding an
EPC and has also access to other parts of the memory needed
by the WISSE protocols. Unfortunately we can’t assume WSN
to be able to read RFID tags. We believe is a reasonable
assumption for manufactures integrating both RFID tags and
WSN in their products to inject RFID information into the
nodes by reader/SN gates installed in factory facilities such as
conveyor belts. This way, while RFID tags would still maintain
their functionality if read by regular RFID readers, the sensor
nodes could participate in the WISSE network on behalf of
the same objects. Nevertheless, Section V considers how to
overcome the situations where this mapping was not done at
manufacturing time.

IV. GROUPING

Single entity data is normally poor in the sense that can
not offer enough context information for obtaining relevant
services. Providing as much data as possible for the same client
may extend its context information and hence the possible
available services.

WISSE entities sense not only the environment but also the
presence of other entities, and so may associate with them if
they have the same interests. Grouping is the process by which
two or more entities decide to collaborate by sharing their con-
text information. Entities periodically advertise their presence
by sending advertisement packets and listen to other entities
in periodic, unsynchronized intervals. To provide entities with
the ability to decide which other entities they should associate
with, we divide the grouping process in two phases. The first
phase involves the information stored in the RFID tags to
make basic decisions and prioritize the association process.
The second phase involves choosing representatives, invoking
the addressing process and distributing the results to all the
group members. Only when the grouping process is finished,
the entities will be aware of their new membership and results
will be communicated to the rest of the WISSE infrastructure.

In order to deal properly with dynamic wireless networks,
WISSE organizes any combination of associated entities in a
double clustered architecture. On one hand, each individual
entity chooses a cluster head, which will communicate with

other cluster heads from other entities. On the other hand, a
group of associated entities chooses a correspondent cluster
head to communicate with the service network. Finally, each
entity group chooses a meaningful identifier (EPC) among
all entities, which will represent the group for the rest of
the system. An entity will report its interactions dynamically,
getting services according to the context gained through them.
The following sections detail all the process happening in
the Context Layer, from choosing which entities shall form
a group to which identifier should be chosen.

A. Representative Election

1) Entity Cluster Head Election: Entity Cluster Heads
(ECH) are used by single entities to communicate with other
entities. Thus, the first task of the entity’s sensor nodes is
to undertake an ECH election process. This process is as
follows: When a node marked as “ECH capable” is unable
to find its entity cluster head, it sends a proposal for being
ECH for a time T¢,,4¢y, which is a function of the node’s
remaining energy. Only nodes which compute higher T¢,,4;4,
will respond to the proposal. In order to avoid collisions when
more than one node tries to answer, a delay in the response is
introduce, also function of the remaining power plus a random
component [14]. We can compute the proposed time and delay
as follows:

Tentity = C1 X RemainingEnergy

C.
Delay = - ,2 + Random
RemainingEnergy
C
where 0 < Random < m and Cq, Cy are
constants

Once the process is finished, the ECH election result
will be broadcasted to the rest of the entity’s nodes, which
from that moment will use the ECH as a relay node to
communicate with the outside.

2) Correspondent Election: WISSE correspondents are de-
fined as ECHs that are elected to communicate the entity
with the Service Network Edge. Only one correspondent can
exist per group of associated entities. If an entity doesn’t
belong to any group, its ECH is automatically promoted to
correspondent.

Not any ECH is eligible at any time to become a corre-
spondent. It is possible for certain nodes of an entity to be
in range with some sensor network gateway (edge device)
while some other remain “hidden” or out of range. Apart from
an efficient energy use, the correspondent election procedure
should not choose a correspondent which is hidden while
some other ECH from the group is in range with an edge
device. To address this issue, edge devices send advertisement
packets to announce their presence. Only ECHs that receive
an advertisement (ADV packet) will start the correspondent
election process:

The Correspondent election procedure follows the same
algorithm exposed before for the ECH election, using Tcorresp
as the proposed time. The Correspondent election procedure
starts when:

1) No correspondent is currently selected in the group,

2) When T orresp €Xpires

3) When current correspondent looses range with all the
edge devices

4) An ECH who didn’t participate in the previous election
and has more remaining power than current correspon-
dent now receives an ADV packet

5) An ECH can not communicate with current correspon-
dent before Tiorresp €Xpires

6) A new entity is added to the correspondent’s group.

According to this algorithm, if an entity looses its corre-
spondent and no ECH receives an ADV packet, the election
process won’t start again to choose a new correspondent. This
situation is undesirable because the context information of the
grouped entities may still be useful locally. Moreover, we can
not allow new groupings to be discarded due to temporal
disconnections. To avoid this problem, the correspondent
selection procedure will be started by any node which runs
more than a certain time Tpy,_4py without being able to
communicate with its correspondent. When connection with
the service network is reestablished, entities holding a corre-
spondent selected in this way will start a regular correspondent
election procedure again.

In our research we focus on groups of entities that can
associate dynamically and spontaneously. For this reason, we
should avoid storing vital grouping information in a centralized
manner, but rather distribute this information. This is specially
true for the elected correspondent, as the entity is contained
in may un-group without prior notice. Unlike correspondents,
however, EHCs are unlikely to die without warning as they
remain attached to their entities. WISSE defines that each
ECH shall store a table with a list of its entity’s nodes and the
sensors and actuators they hold (Node Table). Additionally, the
ECH will store its address and may store some other additional
information such as its level in the association hierarchy. When
an ECH finishes its representation period or is about to exhaust
its battery, its node table will be transferred to the next elected
ECH.

B. Grouping Procedure

The grouping procedure concept behind WISSE asso-
ciations is rather simple: entity correspondents send pe-
riodic broadcast of grouping.request packets look-
ing for other entities to associate with. Entities that
receive grouping._request packets may process the
packet information and decide to associate sending back a
grouping.response. The responding entity makes de-
cisions on which will be the new representative EPC of
the resulting entity. Results are communicated to all entity
members and a new correspondent election process begins.
This process may involve several entities at the same time.

However, a too simplistic approach may lead to an unre-
alistic design. In general, we need to monitor the grouping
procedure to avoid uncontrollable chain associations that will
exhaust the nodes’ batteries. In particular, if the objective is
to provide shared context relevant to the clients, association
nature and priorities should be consider carefully before using
the devices’ scarce resources. In our work, we try to meet these
requirements by proposing a two-phase grouping procedure.
The first phase, or pre-grouping, aims to organize and filter
the entities that should undertake a full association procedure,
which takes place in the second phase. The following sections
describe the concepts and algorithms behind this two-phase
grouping.

1) Phase 1: Pregrouping: In general, the main purpose of
the RFID tags is to provide unique identification. In the EPC
Global Class-1 Gen2, that unique identification is given by
the tag’s Electronic Product Code. The standard also specifies
other kind of information that may be stored in the tag’s
memory. There are four logically separated memory banks
in a Gen2 tag. Bank 1 contains the EPC information, while
banks 0 and 3 contain other data for security and compatibility
reasons. Gen2 also specifies a fourth memory bank called the
user memory bank. Its organization, size and purpose is said
to be user-specific. WISSE uses this additional data storage to
keep a minimum set of logical information that will help in
the pre-grouping phase. We justify the need for this additional
data based on the observation that:

1) The properties of the EPC Global core services and
infrastructure makes it possible to retrieve information
from remote databases using any EPC as a search key.
This information could help to make decisions on the
association procedure. However, even if we could make
relevant information available for any EPC and build the
logic to process that information, we would still have a
connectivity problem: the inherently unreliable wireless
communications may occasionally break the bridge to
upper layers, making logical information unavailable.
Furthermore, decision time could become unacceptably
long.

2) We should consider priorities when grouping multiple
entities at the same time. Even if the “businessman”
from Fig. 1 could associate with his office chairs to
receive, let’s say, chair locations for tracking purposes,
he would definitely prefer to associate his PDA and his
ID card first to find out his own location.

3) Security mechanisms are necessary that will allow pri-
vate groups and prevent unauthorized associations.

WISSE specifies the user memory bank containing two dif-
ferent ids, a user ID and a group ID. Unlike the EPCs, these 16
bit identification numbers don’t refer to the physical product,
but rather to its logical use. The group ID is compulsory and
shall contain a non zero value for any RFID tag compatible
with the WISSE architecture. Its use is to define general object
classes such as furniture, human, vehicle, food, books, clothes,
etc. The user ID is optional and is intended for user-defined

object classes. Additionally, a user password may be specified
for preventing unauthorized association to user-defined groups.
A tag not belonging to any user-defined class should set its
user ID to 0. In this case, the user password bit shall be also
set to 0. Figure 2 shows the logical memory map of the user
memory bank of tags participating in the WISSE architecture.

MSB LSB
—

Bank 11 USER 40, User Password [31:16] 4F,
Bank 10 TIC 30" User Password [15:0] 3Fh
AN 20, Restriction Bits [15:0] 2F,

Bank 01 EPC
\wh Group ID [15:0] 1F,
Bank 00 Reserved 00} User ID [15:0] OF,

User Password Elw
000000000000 1pEuEnE
Grouping bits_+

Restriction Bits

Fig. 2. RFID tag user memory bank layout

Entities send their user memory bank information together
with their grouping.-request packets once every Group-
ing Period (GP). GPs have a fixed size, and they always
start with an also fixed sending interval in which the entities
actually send their grouping_request packets. During the
rest of the GP, entities listen for other grouping_request
packets. Figure 3 shows how the grouping periods are dis-
tributed. During the fixed interval time T2-T1 entities listen for
request packets. If any request is received, they process them
producing a grouping._response. The processing time is
variable depending on the number of requests received. If any
request is received from T2 to T3, they are queued and will
be processed at next GP’s processing period, starting at TS.

Grouping Period

Listen Listen

Send

Process Process
T % T E Time”
Fig. 3. Distribution of Grouping Periods.

As mentioned before, entities send their user memory
bank information together with their grouping_request
packets. According to this information, WISSE pre-grouping
distinguishes 3 classes of entities at association time: User,
Group and Other. The User class is granted to those
grouping._request packets that share the same user ID as
the entity that receives that packet. The Group class is granted
in a similar way but considering the group id values. Packets
not matching the User id nor the Group id values are granted
the Other class.

It is also possible to specify which kind of combination of
classes this entity is allowed to group with. The grouping bits
provide this function by marking “1” when a certain class is
allowed for association. The default value is “111”. meaning
that this entity is willing to associate with any kind of entities.
Grouping requests are hence classified upon reception in the

I Delete from list

Request list non responding

Grouping_response

(1:MaxReqList]
—

1:MaxReqList
Test_presence(Request_list)

(NewNet/D, SizeRequest_list,

Address) NewNetID =
NetID?

Associations=Association+
SizeOf(Request_list)

Make LowestLevellist
from Request_List

1:MaxReqList

NetlD=NewNetID

NetlD=NewNetID

1’ 1:MaxLowestLevellist

HAL=HighestAssociations{LowestLavellist) |

Begin VET Update (Request_list) e

with NewNet|D
Associations=associations

,1’ 1:MaxHAL

T +SizeRequest_list

|

NewhetlD=MyNetIlD

Grouping_response(
NewNetID, SizeOf(Request_list),
Compute(Address)) to
Request_list

Send Grouping_response

(NewNetID, SizeRequestList,

Compute_address{Address))
to children & parent

Randomly choose
from HAL

MewNetID=Chosen(NetID)

Delegate_Grouping_response(l
MNewNetlD, Request_list,
) to HighestAssaociations(MNetD) EXIT

(a) Grouping Request

Fig. 4.

(b) Grouping Response

Block diagrams related to the grouping._request and grouping._response packets. The algorithm in a) will be executed when a list with

accepted requests is received from Phase 1. The algorithm in b) will be executed when the a grouping_response packet is received

three mentioned groups, and are processed by class starting
from the ones in the User class and finishing with those in the
Other class. This procedure assures not only that associations
will be granted in a controllable way, but also that there will be
a priority in those associations, giving preference to the user-
defined classes. Figure 5 depicts the algorithm that classifies
the requests in classes according to their user memory bank
information.

NO Granted: User VES
Hanw
Passwordy Passwordy
NO

Granted: Group
Granted: Other

IGNORE

Request (Group,
User, Password) VES

Fig. 5. Classification of request in the pre-grouping phase

The pre-grouping phase ends by providing the next phase
with a list of received requests with the highest priority. Only
one class will be processed in one grouping period, while the
rest of requests will be queued in a FCFS manner for next
processing time.

2) Phase 2: Grouping: One of the most important princi-
ples of WISSE is that entities are represented in the system
by one EPC. When entities associate, one of their EPCs is
chosen as representative of the group. We could say that the
group of associated entities form a wireless sensor network,
and that the EPC is its network ID (or NetID, for short). This
design allows the addressing of meaningful groups of entities
globally under a unique identifier. Nonetheless, WISSE still

maintains the possibility of accessing every individual EPC
through a database of associations called the Virtual Entity
Database (VED). The VED design is described on [1].

Although the purpose of having a unique address for every
group of associated entities is fulfilled by choosing any of their
EPCs as representative, is obvious that the more meaningful
this choice is, the best it will represent the group. For example,
our “businessman” group would be better identified by the
EPC from its digital ID card than the EPC of its shirt, even
if both EPCs may be valid unique network identifiers. Better
choices allow to easily recognize the nature of a group without
having to dig in all its entities. In order to make optimum
choices and better organize the associations, the VED is also
arranged in a hierarchical manner, where lower levels hold
more representative entities.

The main goal of Phase 2 is to process the
grouping.requests coming from Phase 1 and choose a
NetID among all the entities that will associate. The chosen
NetID must be notified to all the members of the group.
Another important task of this phase is assigning local
addresses for communication and routing. Explanation of
the addressing scheme (called Sequence Chain) is out of the
scope of this paper.

Figures 4(a), and 4(b) depict the algorithms involved in
this second phase of grouping. Since entities are mobile,
the first task of the algorithm is to check if all the entities
from which we have a request are still there. Next task is
to elect the NetID that will represent the entity. For this,
we first choose according to the level of the entity in the
hierarchy, as we mentioned earlier. For the same level, we
choose the entity which is already grouped with more entities.
This has to do with efficiency reasons, as the cost of updating
databse records is directly related with how many entities
are associated around the same NetID. Finally, the algorithm
generates the grouping_response, sends the updates to
the service network and updates also its number of associated

entities.

The previous algorithm, executed by ECHs
receiving grouping.request packets, produces a
grouping._response packet that is sent back to
the sender. Upon reception, the node receiving the

grouping._response should, first, proceed with the
changes indicated in the packet. These changes involve
updating its NetID information, its address and the number
of entities that now form part of the group. Finally, those
changes should be transmitted to the rest of the entities of
this group. The algorithm achieves that by sending itself in a
recursive manner until all the members are notified. Note that
the part of the algorithm that deals with addressing issues has
been simplified to make the diagrams clearer.

V. GROUPING EXTENSIONS

As we mentioned in3 section III, the ideal scenario for
our framework is the RFID tag’s memory to be mapped into
the RFID node’s memory. However, it is possible for this
assumption to be invalidated by scenarios where manufacturers
don’t provide the mapping or where new nodes are added
to the entities by the users. To try to consider all possible
scenarios, we also propose an extension to the regular grouping
where the tag’s memory is not initially mapped into any sensor
node.

In order to read RFID tags inside the mobile entities without
using sensor nodes, we should consider portable RFID readers.
Readers keep a list with the RFID tags they read. This way we
can avoid repetitive groupings, not only with the tags mediated
through the RFID reader, but also with tags that belong to
regular entities. We call this list Registered Tag List (RTL).

There are two cases where the memory of a RFID tag might
not be mapped into a sensor node’s memory:

1) The entity where the tag is located doesn’t contain any

sensor node.

2) The entity where the tag is located does contain sensor
nodes but one or more of them don’t have a valid tag
map into their memory

Algorithm 1 shows the procedure that a reader belonging
to a WISSE group will undertake when it reads a tag. In lines
1-3, the reader checks if that tag was already read in the past.
In line 4, the reader sends a MAC level broadcast looking
for nodes without a valid network address (nodes without a
valid tag memory map). If it receives any response (lines 6-7),
the reader will inject the memory map from the tag to those
nodes and let them undertake the regular grouping procedures.
Otherwise (lines 8-10), the reader will register the tag as a
new entity and will begin the periodic grouping procedure by
sending grouping_request on behalf of the tag.

VI. CONCLUSION

In this paper we analyze in detail the Context Layer
protocols of the WISSE framework. These protocols allow
to transfer part of the smartness from context-based systems
directly to the context producers. Furthermore, we exploit
the use of the RFID technology by including additional

Algorithm 1 ReadTag(tagMemoryMap,RTL)

1: if (tagMemoryMap.EPC € RTL) then

2 break

3: else
4: send responseList=broadcast(MACbroadcastAddress)
5: add tagMemoryMap to RTL
6
7
8

if (responseList # null) then
send maplnjection(tagMemoryMap, responseList)

: else
9: send ve_register(fagMemoryMap.EPC)
10: send grouping_request(gpLength)
11: end if
12: end if

information in the tags that will augment the context data and
help the Context Layer protocols. Merging this work with the
rest of the WISSE infrastructure provides a novel approach to
Smart Spaces, where active clients provide dynamically their
context information through arbitrary gateways, simplifying
the needed infrastructure and providing the means for true
pervasive environments.

ACKNOWLEDGMENT

This research has been sponsored by the M-BcN project of
KT(Korea Telecom) BcN Business Unit in Korea.

REFERENCES

[1] Tomds Sénchez Lopez, Daeyoung Kim and Taesoo Park, A service Frame-

work for Mobile Ubiquitous Sensor Networks and RFID, ISWPC’06

Ken Traub et all, The EPC Global Architecture Framework, EPCglobal,

July 2005

F. Kawsar, Kaori Fujinami, Tatsuo Nakajima, Experiences with Develop-

ing Context-Aware Applications with augmented artifacts, Ubicomp 2005,

Tokyo, Japan

[4] H.W. Gellersen, Albrecht Schmidt and Michael Beigl, Adding some
smartness to devices and everyday things, WMCSA’00, 2000

[S] Waylon Brunette, Jonathan Lester, Adam Rea and Gaetano Borriello,

Some sensor network elements for ubiquitous computing, IPSN 2005,

388-392, April 2005

Christer Englund, Henrik Walling, RIFD in wireless sensor networks,

Technical Report, Chalmers University of Technology, April 2004

Yoshinori ISODA et al., Ubiquitous Sensors based Human Behavior

Modeling and Recognition using a Spatio-Temporal Representation of

User States, AINAO4, Valume 1, p. 512, 2004

[8] Kiran Kumar, Salim Hariri, Nader V. Chalfoun, Autonomous Middleware
Framework for Sensor Networks, ICPS 2005, 11-14 July 2005

[9] Saad Liaquat Kiani, Maria Riaz, Sungyoung Lee, Young-Koo Lee,Context
Awareness Scale Ubiquitous Environments with a Service Oriented Dis-
tributed Middleware, ICIS 2005

[10] Anand Ranganathan and Roy H. Campbell, A Middleware for Context-
Aware Agents in Ubiquitous Computing Environments, Middleware 2003,
LNCS 2672, pp. 143161, 2003.

[11] Harry Lik Chen, An Intelligent Broker Architecture for Pervasive
Context-Aware Systems, Thesis Disertation, University of Maryland, 2004

[12] Stephen S. Yau and Fariaz Karim, Context-Sensitive Middleware for
Real-time Software In Ubiquitous Computing Environments, ISORC 2001

[13] Hideyuki Takahashi, Takuo Suganuma and Norio Shiratori, AMUSE:
An Agent-based Middleware for Context-aware Ubiquitous Services,
ICPADS’05, July 20-22 2005

[14] Srikanth Kandula, Jennifer Hou, Lui Sha, A case for Resource Hetero-
geneity in Large Sensor Networks, in Proceedings of MilCom 2004

[15] EPCglobal Inc, Class 1 Generation 2 UHF Air Interface Protocol
Standard Version 1.0.9: “Gen 27, Ratified Standard, January 2005.

[2

—

3

—

[6

—_

[7

—

