
 1

Abstract—ZigBee is the emerging industrial standard for ad hoc
networks based on IEEE 802.15.4. Due to characteristics such as
low data rate, low price, and low power consumption, ZigBee is
expected to be used in wireless sensor networks for remote
monitoring, home control, and industrial automation. Since one
of the most important goals is to reduce the installation and
running cost, ZigBee stack is embedded in small and cheap
micro-controller units. Since tree routing does not require any
routing tables to send the packet to the destination, it can be used
in ZigBee end devices that have limited resources. However, tree
routing has the problem that the packets follow the tree topology
to the destination even if the destination is located nearby. We
propose the shortcut tree routing protocol to reduce the routing
cost of ZigBee tree routing by using the neighbor table that is
originally defined in the ZigBee standard. While following the
ZigBee tree routing algorithm, we suggest forwarding the packet
to the neighbor node if it can reduce the routing cost to the
destination. Simulation results show that the shortcut tree
routing algorithm saves more than 30 percent of the hop count
compared with ZigBee tree routing.

Index Terms—ZigBee, Tree routing, Neighbor Table

I. INTRODUCTION
igbee is an emerging worldwide standard for wireless
personal area network. Under the main goal to provide

low-power, cost-effective, flexible, reliable, and scalable
wireless products, ZigBee Alliance has been developing and
standardizing the ZigBee network. On December 2004, they
released the ZigBee Specification version 1.0 [1] to the public.
Based on IEEE 802.15.4, ZigBee Specification defines a
network layer, application framework as well as security
services. Since ZigBee devices are designed for low cost and
low data rates, it is expected their use in home and building
automation with significantly small costs. Moreover, ZigBee
networks support star and mesh topology, self-forming and
self-healing as well as more than 65000 address spaces; thus,
network can be easily extended in terms of size and coverage
area.

Among many useful functions in ZigBee network layer, the
tree routing algorithm supports simple but reliable routing for
any destination address. In ZigBee, network addresses are
assigned using a distributed addressing scheme that is
designed to provide every potential parent with a finite sub-
block of network addresses. Due to such addressing scheme,
the network constructs a tree topology; each device can
manage the address space of its descendant. If the destination
address is in the address space that a node is managing, the
node forwards the packet to one of its child nodes. Otherwise,
it forwards the packet to its parent node. The parent or child
node which receives the packet selects the next hop node

according to the destination address in the same manner.
Tree routing algorithm is thus able to find the next hop

node for a given destination address without routing tables.
However, a sender can not know if the destination is located
nearby or if it’s not in the sub-tree which the sender is
contained in, since tree routing concerns only about the parent
and descendants of the sender node. Although the tree routing
is efficient in the view point of memory usage, the routing
cost is sometimes inefficient. This paper proposes the shortcut
tree routing algorithm to archive both memory efficiency and
routing efficiency.

The scheme proposed in this paper improves the ZigBee
routing algorithm by employing neighbor tables, which are
already part of the existing ZigBee network specification. To
overcome the overhead of routing along the tree, we suggest
nodes to check their neighbor tables before sending the data to
its parent or children. If the table contains a neighbor node
that enables reducing the routing cost to the destination, it can
be the next hop node for the given destination, instead of the
parent or a child node.

This paper is organized as follows. Section II briefly
introduces the tree routing scheme and neighbor table in
ZigBee, the problem of tree routing is described in Section III.
With the proposed algorithm in Section IV, we evaluate the
performance and conclude in Section V and VI.

II. ZIGBEE AND IEEE 802.15.4
The ZigBee Alliance is an association of companies

working together to enable reliable, cost-effective, low-power,
wirelessly networked, monitoring, and control products based
on open standards. It is composed of about 200 member
companies including 14 promoters such as Motorola,
Freescale, Philips, and Samsung. Since their release of the
ZigBee Specification version 1.0 on December 2004, a new
version was announced on September 2006 including
multicast, end device mobility and routing mobility.

A. IEEE 802.15.4
The ZigBee protocol stack is described in Fig. 1. As we can

see, the IEEE 802.15.4 and the ZigBee network are tightly
coupled to provide the consumer standardization for low-
power and low-rate wireless communication devices. IEEE
802.15.4 PHY layer provides 16 channels for ISM 2.4 GHz,
10 channels for ISM 900 MHz, and 1 channel for 868 MHz
IEEE 802.15.4 PHY provides LQI (Link Quality Indicator) in
order to characterize the quality of links between nodes, as
well as data transmission and reception.

Shortcut Tree Routing in ZigBee Networks
Taehong Kim, Daeyoung Kim, Noseong Park*, Seong-eun Yoo, Tomás Sánchez López

Information and Communications University, Electronics and Telecommunications Research Institute*
{damiano, kimd, seyoo, tomas}@icu.ac.kr, behack@etri.re.kr*

Z

 2

IEEE 802.15.4 MAC uses the Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) mechanism for
accessing the channel, like other wireless networks such as
IEEE 802.11 and IEEE 802.15.3. There are two variations:
Beacon Enabled Network which uses the Slotted CSMA-CA
and Non Beacon Enabled Network which uses the Unslotted
CSMA-CA. Moreover, it provides the GTS (Guaranteed Time
Slots) allocation method in order to provide real time data
communication.

The device types supported by IEEE 802.15.4 and ZigBee
are FFD (Full Function Device) and RFD (Reduced Function
Device). FFD can communicate with both FFD and RFD, and
it can be the PAN Coordinator, Router, and End Device. RFD
can only communicate with FFD, so it can be only End
Device. Therefore, RFD requires relatively small resources
including memory size.

PHY LAYER

MAC LAYER

NETWORK/SECURTIY
LAYERS

APPLICATION FRAMEWORK

APPLICATION/PROFILES

IEEE

ZigBee
Alliance
Platform

Application

ZigBee Platform Stack

Silicon

ZigBee or OEM

PHY LAYER

MAC LAYER

NETWORK/SECURTIY
LAYERS

APPLICATION FRAMEWORK

APPLICATION/PROFILES

IEEE

ZigBee
Alliance
Platform

Application

ZigBee Platform Stack

Silicon

ZigBee or OEM

Fig. 1. ZigBee protocol stack

B. ZigBee network
Based on IEEE 802.15.4 PHY/MAC, the ZigBee network

layer provides functionality such as dynamic network
formation, addressing, routing, and discovering 1 hop
neighbors. The size of the network address is 16 bits, so
ZigBee is capable to accept about 65535 devices in a network,
and the network address is assigned in a hierarchical tree
structure. ZigBee provides not only star topology, but also
mesh topology. Since any device can communicate with other
devices except the PAN Coordinator, the network has high
scalability and flexibility. Besides, the self-formation and self-
healing features makes ZigBee more attractive. The deployed
ZigBee devices automatically construct the network, and then
changes such as joining/leaving of devices are automatically
reflected in the network configuration.

The routing protocols that ZigBee provides are tree routing
and table-driven routing. Tree routing is based on the block
address allocation mechanism, called Cskip, so each device
has an address spaces to distribute to their children. When a
device has no capability of routing table and route discovery
table, it simply follows the hierarchical tree by comparing the
destination address. The most significant benefit of tree
routing is its simplicity and limited use of resources.
Therefore, any device with low resources can participate in
any ZigBee compliant network. On the other hand, table-
driven routing is basically similar to the Ad hoc On-demand
Distance Vector (AODV) routing protocol for general multi-

hop ad hoc network. Whereas tree routing is very simple and
inefficient, the table-driven routing provides optimal routes to
the destination.

1) Tree routing algorithm
Every potential parent is provided with a finite sub-block of

the address space, which is used to assign network addresses
to its children. Given nwkmaxChildren (Cm), nwkcMaxDepth
(Lm), and nwkmaxRouters (Rm), we can compute the function
Cskip(d) as the size of the address sub-block distributed by
each parent at depth d as follows:

11()
1

Lm dCm Rm Cm RmCskip d
Rm

− −+ − − ⋅
=

−

For example, the kth router and nth end device shall be
assigned the network address by their parent at depth d as in
the following equation.

() (1) 1 (1)

() (1 -)
k parent

n parent

A A Cskip d k k Rm

A A Cskip d Rm n n Cm Rm

= + ⋅ − + ≤ ≤

= + ⋅ + ≤ ≤

A kth router that has positive Cskip(d) can distribute address
spaces to its child nodes. Since every device in the network is
a descendant of the ZigBee coordinator and no device in the
network is the descendant of any ZigBee end device, any
device with address A at depth d has the destination device
with address D if the following equation is satisfied.

(1)A D A Cskip d< < + −
In tree routing, if the destination is a descendant, the device

sends the data to one of its children; otherwise, it sends to its
parent.

2) Neighbor table
Each device in ZigBee maintains a neighbor table which

has all the neighbor information in the 1-hop transmission
range. If users limit the size of the neighbor table, the selected
numbers of neighbor entries are stored in the table. The
contents for a neighbor entry are the network’s PAN identifier,
node’s extended address, network address, device type and
relationship. Optionally, additional information such as
beacon order, depth or permit joining can be included.

Entries in the table are created when the node joins to an
existing network. When a joining node requests a NLME-
NETWORK-DISCOVERY, it receives response beacons from
already joined nodes. The newly joined node stores neighbors’
information from the information contained in beacon packets.
Conversely, the neighbor entry is removed when the neighbor
node leaves the network. Nodes can know this fact by
receiving NLME-LEAVE.indication messages. Since the
information on the neighbor table is updated every time a
device receives any frame from the some neighbor node, the
information of the neighbor table can be said to be up-to-date
all the time.

III. PROBLEM DESCRIPTION
The tree routing protocol uses only parent and child

relationship for routing, ignoring neighbor nodes. As a result,
packets may be routed through several hops towards the
destination even if this is within sender’s 1-hop transmission
range. Fig. 2 shows an example of the described problem.

 3

In Fig. 2, the packet from the source node goes up to the
root node following the parent node, and goes back to the
destination. In this way, 4 hops are required to reach the
destination. However, if the source node sends the packet
directly to the destination, it needs only 1 hop routing cost.

In many cases, the routing overhead of tree routing
algorithm can not be avoided if only parent-child relationships
are considered in the routing. In order to overcome such
problem, each node should consider its neighbor nodes as next
hop nodes.

IV. SHORTCUT TREE ROUTING ALGORITHM
We propose the shortcut tree routing algorithm that

improves existing ZigBee tree routing by using the neighbor
table. In other words, the proposed algorithm basically follows
ZigBee tree routing algorithm, but chooses neighbor nodes as
next hop nodes if the routing cost to the destination can be
reduced. The neighbor table that we use in the proposed
algorithm is defined in the ZigBee specification, so we don’t
need to make an effort to search neighbor list. In order to
choose the next hop node that can reduce the routing cost, the
remaining hop count from the next hop node to the destination
is computed for all the neighbor nodes including parent and
children nodes. As Fig. 3 shows, the remaining hops to the
destination for each neighbor can be computed assuming that
the route from the neighbor to the destination goes along the
tree. In the above Fig. 3, the route cost can be minimized if the
sender transmits the data directly to the destination.

Find_NextHopAddr() function described on table 1 is the
algorithm for an intermediate or source node to select the next
hop node which has the minimum remaining hop count for the
given destination. Because the proposed algorithm follows
fundamentally the ZigBee tree routing, the parent or child
node is selected as the next hop node in lines 2-3. In addition,
the remaining routing cost when we follow ZigBee tree
routing is stored into minNHRouteCost.

In line 4-13, intermediate or source nodes check the
remaining routing cost myRouteCost when selecting a
neighbor node as the next hop node. The remaining routing
cost is calculated based on the remaining hop count to the
destination assuming that the packet goes along the ZigBee
tree routing. In order to calculate the remaining hop count, the
hierarchical address structure is used.

 TABLE 1 ALGORITHM TO CHOOSE NEXT HOP NODE FOR THE GIVEN DSTADDR

Find_NextHopAddr(dstAddr)
Input: dstAddr
Output: NHDstAddr
begin
1. depth_dstAddr = Find_AddrRange(dstAddr, 0, 0)
2. Assign the next hop node of tree routing to NHDstAddr
3. Assign the remaining hop count when selecting NHDstAddr

to minNHRouteCost
4. for each (neighbor nk in neighbor table)
5. i = 0
6. while (nk is in AddrRange[i+1] && i < depth_dstAddr)
7. ++i
8. myRouteCost = (depth_dstAddr – i) + (depth(nk) – i)
9. if (minNHRouteCost > myRouteCost)
10. NHDstAddr = nk
11. minNHRouteCost = myRouteCost
12. end if
13.end for each
End

By comparing whether the address of a neighbor node is

contained in the address space that contains the destination
address in each level (AddrRange[]), we can find the root of
the common sub-tree that contains both the neighbor node and
the destination in line 5-7. Among several common sub-trees,
the root of the highest level common sub-tree can be the
reference point for the calculations as in Fig. 4. The dotted
node is the root of the highest level common sub-tree, and the
number besides it indicates its tree level. Based on this
reference level, we can calculate the remaining hop count
using the equation (level of source node – highest level of on
sub-tree) + (level of destination node – highest level of on
sub-tree). Since the route path goes up to the parent which
contains the destination and goes down to the destination in
the tree routing, the proposed algorithm computes the route
cost in the same way the tree routing does.

Fig. 4. Calculation of Route Cost when following ZigBee tree routing

If myRouteCost is less than the existing minNHRouteCost,

the next hop node NHDstAddr is replaced with that neighbor
node and minNHRouteCost is also changed to myRouteCost.
Therefore, we can find the next hop node that has the
minimum remaining routing cost among all the neighbors,
including parent and children nodes. If there is no neighbor
node that has smaller remaining hop count than the parent or
some child node, the next hop node is determined by the
regular ZigBee tree routing.

Fig. 2. Problem of Tree Routing Fig. 3. Candidates for Next Hop

 4

TABLE 2 ALGORITHM TO FIND ADDRESS RANGE OF DESTINATION

Find_AddrRange(dstAddr, startAddr, curDepth)
Input: dstAddr, startAddr, curDepth
Output: depth_dstAddr, AddrRange[depth_dstAddr]
begin
1. if (dstAddr = startAddr)
2. return curDepth
3. else
4. for i = 1 to Rm
5. if (dstAddr is in the address space of ith router)
6. store address space of ith router to AddrRange[curDepth+1]
7. return Find_AddrRange(dstAddr, ith router, curDepth+1)
8. end if
9. end for

10. if (Cm-Rm > 0)
11. if (dstAddr is the end device of startAddr)
12. store dstAddr to AddrRange[curDepth+1]
13. return curDepth+1
14. end if
15. end if
16.end if
end

In order to calculate the remaining hops in table 1, we need

to compute the address space in which the destination address
is contained at each level of the tree together with the depth of
the destination. The Find_AddrRange (dstAddr, startAddr,
curDepth) function in table 2 is the algorithm to get
AddrRange[] and depth_dstAddr. The address space of
destination AddrRange[] can be obtained by finding its
ancestor nodes in each level and calculating the address space
according to the ZigBee’s address assignment scheme.

The Find_AddrRange() is a recursive function that has the
arguments startAddr, curDepth, and dstAddr. A startAddr is
the address of the ancestor node at curDepth for the given
destination dstAddr. This function is started with startAddr 0
and curDepth 0 by calling from the Find_NextHopAddr()
function, and returns the address space in which the
destination address is contained at each depth, AddrRange[],
and the depth of the destination, depth_dstAddr.

Although the next hop is selected based on the local
minimum in the shortcut tree routing algorithm, loops never
occur because the remaining hops are computed based on the
tree routing. For instance, the route to the destination from the
parent or child of a node that received a packet from a certain
node v has always smaller remaining hops than from the node
v.

V. PERFORMANCE EVALUATION

A. Time Complexity
Theorem1. The proposed algorithm can be solved in

polynomial time.
Let n be the number of neighbor nodes of a certain

intermediate or source node. The time complexity of the
proposed algorithm can be found out by invoking the
Find_NextHopAddr() function. This function calls
Find_AddrRange() once to find the address space in which the

destination address is contained, and calls it n times to find the
highest level common sub-tree for each neighbor node (lines
5-7).

Since Find_AddrRange() function is recursively called at
most Lm times and it takes a maximum of Rm times within a
function to find the address space at each level, the total
number of calls is at most Lm·Rm times. The time complexity
for finding AddrRange[] can be ignored since Lm and Rm are
constant. For calculating the remaining hop count for each
node, the while loop is repeated at most Lm times. This
procedure is performed n times for all the neighbor nodes of
an intermediate or source node; Thus, the total number of calls
are at most Lm ·n. Therefore, the time complexity of the
shortcut tree routing algorithm is O(Lm·n).

B. Upper Boundary of the Routing Cost
Theorem2. The routing cost to the destination does not

exceed that of the tree routing.
Every intermediate or source node v basically selects the

next hop node following ZigBee tree routing, and selects the
neighbor node as the next hop node only if the routing cost is
smaller than that of the ZigBee tree routing.

In the ZigBee tree routing, the parent node p is selected as
the next hop node if the destination address is not included in
the address space of node v. Conversely, when the destination
address is in the address space of node v, the next hop node is
determined as the child node c since the destination address is
one of the descendants of node v.

Since the proposed algorithm chooses the next hop node
according to ZigBee tree routing, the selected next hop node
has always smaller remaining routing cost than any other
parent or children of node v. In order to replace the next hop
node, a neighbor node should not be either its parent or child
and should have a smaller routing cost to the destination than
the originally selected by ZigBee tree routing. Note that even
if the size of neighbor table is limited, the proposed algorithm
will never select a node with higher routing cost than the one
selected by ZigBee tree routing. Therefore, the proposed
algorithm can not exceed the routing cost of ZigBee routing

C. Simulation Result
We evaluate the performance improvement of our

modification by comparing the routing cost of ZigBee tree
routing and the proposed shortcut tree routing. In the
simulation environment, we set the network size as 100x100
and the transmission range as 20 meters. Every node has
identical transmission range and they are randomly deployed.
Thus, the network topology in the simulation is always
variable, and it may occur for several nodes not to be able to
join the network if there’s no neighbor node within the
transmission range. In our simulations, we only consider
scenarios where more than 80 percent of the total number of
nodes is able to join the network. In order to keep ZigBee’s
network formation and discovery procedures, we limit the
number of children and maximum depth of the tree by setting
Cm=4, Rm=4, and Lm=5.

 5

Fig.5. Average total hop count of all nodes when the destination
is coordinator and the number of MaxNeighbor is 5

Fig. 6. Average total hop count per a node when the destination is
coordinator and the number of MaxNeighbor is 5

Fig. 7. Average total hop count of all nodes when the destination is
random and the number of MaxNeighbor is 5

Fig. 8. Average total hop count per a node when the destination is
random and the number of MaxNeighbor is 5

0

200

400

600

800

1000

1200

50 70 90 110 130 150 170 190

Number of Nodes

T
o
ta

l
H

o
p
 C

o
u
n
ts

ZigBee tree routing

Shortcut tree routing

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

50 70 90 110 130 150 170 190

Number of Nodes

A
ve

ra
g
e
 H

o
p
 p

e
r
N
o
d
e

ZigBee tree routing

Shortcut tree routing

0

100

200

300

400

500

600

700

50 70 90 110 130 150 170 190

Number of Nodes

T
o
ta

l
H

o
p
 C

o
u
n
ts

ZigBee tree routing

Shortcut tree routing

1

1.5

2

2.5

3

3.5

4

50 70 90 110 130 150 170 190

Number of Nodes

A
ve

ra
g
e
 H

o
p
 p

e
r
N
o
d
e

ZigBee tree routing

Shortcut tree routing

In the ZigBee standard, it is allowed to restrict the size of
the neighbor table. However, the management policy for
neighbor tables is delegated to developers. In this paper, we
use the policy that, when the maximum number of neighbors
is reached, a neighbor entry is updated whenever a neighbor
node in a smaller depth is discovered. Moreover, for a finite
size of the neighbor table, we only store pure neighbor node’s
entries (i.e. excluding parent and children nodes)

Fig. 5 and 6 compares the routing cost of ZigBee tree
routing and our shortcut tree routing under the condition that
the destination of all nodes is the ZigBee coordinator and that
the maximum number of neighbor nodes MaxNeighbor is 5.
The performance evaluation of both algorithms is performed
in the same network topology. Fig. 5 measures the total hop
count when all the nodes send the data to the coordinator as
the number of nodes grows. As the number of nodes increase,
the total hop count also increases. However, the total hop
count of the shortcut tree routing is much smaller than that of
ZigBee tree routing. As Fig. 6 shows, the average hop count
per node in the shortcut tree routing is about 2 hops, whereas
the average hop count per node in the ZigBee tree routing is
about 3-4 hops. Moreover, the average hop count per node in
the ZigBee tree routing increases as the number of nodes in
the network increases; the shortcut tree routing, however, is
not affected by the number of nodes in the network. This is
because both, nodes in higher tree levels and neighbor nodes
in lower tree levels than that of the parent increase as the
number of nodes in the network increase. If the routing
follows the regular ZigBee tree hierarchy routing, the hop

count to the coordinator in level 0 increases as the node’s tree
level becomes higher. In our algorithm, however, if there is a
neighbor node that has smaller tree level than the parent node,
the source or intermediate node selects the neighbor node
instead of its parent as the next hop node. Thus, the average
hop count per node in the shortcut tree routing is almost
constant even if the number of nodes in the network increases.

In Fig. 7 and 8, we set the MaxNeighbor to 5 and randomly
select the destination of all nodes in each test. Because the
destination is different in each test, we measure the average
total hop count and the average hop count per node after
repeating the test over 50 times. Usually, the routing cost to
the random destination is higher than when the destination is
the coordinator, because the packet goes up to the node that
has the destination as child node and goes down to the
destination in the tree routing. Thus, the total hop count when
the destination is random (Fig. 7) is as much as twice as when
the destination is the coordinator (Fig. 5). The average hop
count per node using the regular ZigBee tree routing (Fig. 8)
also increases from 4.5 hops to 6 hops as the number of nodes
increases. However, in the shortcut tree routing, it only
increases from 3 to 3.5 hops.

The performance improvement of the shortcut tree routing
is better when the destination is random. The difference on the
average hops per node between the shortcut tree routing and
ZigBee tree routing, when the destination is selected at
random, is about 1.5-2 hops, while the difference under the
condition that the coordinator is the destination is about 1-1.5
hops. The reason for this is that the reduction on the routing

 6

Fig. 9. Percentage of saved hops of proposed scheme according
to number of MaxNeighbor (destination is coordinator)

Fig. 10. Percentage of saved hops of proposed scheme according
to number of MaxNeighbor (destination is random)

20

25

30

35

40

45

50

50 70 90 110 130 150 170 190
Number of Nodes

S
a
ve

d
 H

o
p
s
 P

e
rc

e
n
ta

g
e

MaxNeighbor=1

MaxNeighbor=5

MaxNeighbor=10

MaxNeighbor=∞
0

10

20

30

40

50

60

70

50 70 90 110 130 150 170 190

Number of Nodes

S
a
ve

d
 H

o
p
s
 P

e
rc

e
n
ta

g
e

MaxNeighbor=1

MaxNeighbor=5

MaxNeighbor=10

MaxNeighbor=∞

cost using the shortcut tree routing is more effective when the
destination is random. For example, the routing cost for a
packet to go up to some point and then go down to the
destination is higher than the cost of that packet to just go up
to the coordinator, that is, the root of the tree. Thus the
number of hops we save when the destination is random is
higher than when the destination is the coordinator.

Fig. 9 and 10 measure the percentage of saved hops when
using the shortcut tree routing and varying the MaxNeighbor
from 1, 5, 10, to infinite. Fig. 9 shows the percentage of the
reduction in the hop count when the destination is the
coordinator. The reason that the percentage of saved hops for
every case is almost the same is the management policy for
the neighbor table. In other words, the next hop node selected
in the proposed shortcut tree routing is always the same in
every condition. Because the next hop node should be the
neighbor node that has the smallest tree level in the neighbor
table for the given destination (the coordinator), the node that
has the lowest tree level is always included in the neighbor
table because the management policy prefers nodes in lower
tree levels.

In Fig. 10, since the destination is not the coordinator but a
random node, the possibility for an intermediate or source
node to select a neighbor node as the next hop is quite high
despite the management policy for the neighbor table. Thus,
the number of neighbor node is an important factor for the
performance improvement. For example, the percentage of
saved hops increases from 20 percent at MaxNeighbor 1 to 50
percent at infinite MaxNeighbor. It is notable that we can save
about 30-40 percent of the routing cost with only 5 to 10
neighbor nodes, compared with the 50 percent saved hops
with an infinite number of neighbor nodes.

VI. CONCLUSION
This paper introduces the problem of ZigBee tree routing

and proposes a shortcut tree routing protocol that overcomes
the overhead occurred when following the tree topology. In
the proposed algorithm, the neighbor table that is originally
defined in the ZigBee standard is used to find the optimal next
hop node that has the smallest remaining hop count to the
destination. The shortcut tree routing algorithm is efficient in
terms of both routing performance and time complexity: it

reduces significantly the required routing costs and it can be
solved within polynomial time even when the number of
neighbors is not limited.

As the performance evaluation shows, the shortcut tree
routing reduces more than 30 percent of the routing cost
needed for the regular ZigBee tree routing. If the destination is
the coordinator, the proposed algorithm shows as good
performance as ZigBee’s table driven routing, since
intermediate or source nodes select the node that has the
smallest tree level within its transmission range. For a random
destination, the performance of the proposed algorithm
depends on how many useful neighbor nodes are stored in the
neighbor table. It can be optimized by applying a proper
maximum number of nodes and management policy for the
neighbor table according to the network’s applications.
Therefore, we expect the proposed algorithm to be utilized in
many ZigBee applications requiring both small memory
capacity and high routing performance.

REFERENCES
[1] ZigBee Alliance, Network Layer Specification 1.0, Dec. 2004.
[2] ZigBee Alliance, www.ZigBee.org
[3] “Wireless Medium Access Control and Physical Layer Specifications for

Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std
802.15.4-2003, IEEE Computer Society, 01 October 2003.

[4] G. Ding, Z. Sahinoglu, P. Orlik, J. Zhang, and B. Bhargava, "Efficient
and Reliable Broadcast in ZigBee Networks,” IEEE Transaction on
Mobile Computing, IEEE SECON’05.

[5] D. Kim, Y. Doh, S. Yoo, K. Chang, W. Park, C. Seo, “Low Rate WPAN
Technologies and Standards,” KISS Information and Communications
Journal, Dec. 2004.

[6] J. Kim, H. Lee, D. Hwang, B. Kim, “Development Trend of Standards
for Low-Rate, Low-cost, and Low-Power Wireless PAN,“ Vol. 18, No. 2,
pp. 37, ETRI trends, 2003.

[7] E. Callaway, P. Gorday, L. Hester, J. A. Gutierrez, and M. Naeve,
“Home networking with IEEE 802.15.4: A developing standard for low-
rate wireless personal area networks,” IEEE Communications Magazine,
page 70-77, August 2002.

[8] Johan Lönn and Jonas Olsson, “Zigbee for wireless networking,”
Master’s Thesis: LITH-ITN-ED-EX--05/015--SE, Linköping University,
2005.

[9] Andreas Andersson and Mattias Thoren, “ Zigbee, A suitable base for
embedded wireless development,” Chalmers technology report, 2005.

[10] Nia-Chiang Liang, Ping-Chieh Chen, Tony Sun, Guang Yang, Ling-Jyh
Chen, and Mario Gerla, "Impact of Node Heterogeneity in ZigBee Mesh
Network Routing," 2006 IEEE International Conference on Systems,
Man, and Cybernetics (SMC'06).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

